Mathematica Eterna

Mathematica Eterna
Acceso abierto

ISSN: 1314-3344

abstracto

Funciones normales tropicales: invariantes superiores de Abel-Jacobi de los ciclos tropicales

Mohammad Reza Rahmati

Nosotros considere la variación de tropical Hodge estructura (TVHS) asociado to familias de tropical< /span> variedades. La familia de las tropicales intermedio Los jacobianos de la estructura de Hodge tropical asociada definen un conjunto de jacobianos tropicales, cuyas secciones llamamos funciones normales tropicales. Definimos las derivadas secuenciales formales de estas funciones en la base con respecto a la conexión natural de Gauss-Manin como los invariantes teóricos de Hodge que detectan los ciclos tropicales en las fibras. Las invariantes asociadas que se definen inductivamente son las invariantes superiores de Abel-Jacobi en la categoría tropical. Identifican naturalmente la filtración Bloch-Beilinson tropical en el grupo Chow tropical. Examinamos esta construcción sobre los módulos de curvas tropicales con puntos marcados, para estudiar las clases tautológicas tropicales en el anillo tautológico de trop. La expectativa es que la no trivialidad de estos ciclos podría examinarse con menos complejidad en la categoría tropical. La construcción es compatible con el funtor de tropicalización en la categoría de esquemas, y el procedimiento antes mencionado también proporcionará una forma alternativa de examinar las relaciones en el anillo tautológico de g,n en la categoría de esquemas.< /span>

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.
Top